Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dis Aquat Organ ; 158: 1-20, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602294

ABSTRACT

Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.


Subject(s)
Coinfection , Animals , Coinfection/epidemiology , Coinfection/veterinary , Aquaculture , Bacteria , Climate Change
2.
Article in English | MEDLINE | ID: mdl-38224831

ABSTRACT

Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.


Subject(s)
Penaeidae , Animals , Penaeidae/metabolism , Salinity , Adenosine Triphosphatases/metabolism , Temperature , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Gills/metabolism
3.
Dis Aquat Organ ; 156: 15-28, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882225

ABSTRACT

Numerous strategies have been investigated to combat viral infections in shrimp, specifically targeting the white spot syndrome virus (WSSV) that has caused outbreaks worldwide since the 1990s. One effective treatment involves intramuscular application of dsRNA-mediated interference against the viral capsid protein VP28. However, this approach presents challenges in terms of individual shrimp management, limiting its application on a large scale. To address this, our study aimed to evaluate the efficacy of oral delivery of protected dsRNA using chitosan nanoparticles or virus-like particles (VLPs) synthesized in brome mosaic virus (BMV). These delivery systems were administered before, during, and after WSSV infection to assess their therapeutic potential. Our findings indicate that BMV-derived VLPs demonstrated superior efficiency as nanocontainers for dsRNA delivery. Notably, the treatment involving vp28 dsRNA mixed in the feed and administered simultaneously to shrimp already infected with WSSV exhibited the highest survival rate (48%), while the infected group had a survival rate of zero, suggesting the potential efficacy of this prophylactic approach in commercial shrimp farms.


Subject(s)
Bromovirus , Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , Bromovirus/genetics , RNA, Double-Stranded/genetics
4.
Dis Aquat Organ ; 152: 85-98, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36453457

ABSTRACT

White spot syndrome virus (WSSV) infects several economically important aquaculture species, and has caused significant losses to the industry. This virus belongs to the Nimaviridae family and has a dsDNA genome ranging between 257 and 309 kb (more than 20 isolate genomes have been fully sequenced and published to date). Multiple routes of infection could be the cause of the high virulence and mortality rates detected in shrimp species. Particularly in Penaeus vannamei, differences in isolate virulence have been observed, along with controversy over whether deletions or insertions are associated with virulence gain or loss. The pathogenicity of 3 isolates from 3 localities in Mexico (2 from Sinaloa: 'CIAD' and 'Angostura'; and one from Sonora: 'Sonora') was evaluated in vivo in whiteleg shrimp P. vannamei infection assays. Differences were observed in shrimp mortality rates among the 3 isolates, of which Sonora was the most virulent. Subsequently, the complete genomes of the Sonora and Angostura isolates were sequenced in depth from infected shrimp tissues and assembled in reference to the genome of isolate strain CN01 (KT995472), comprising 289350 and 288995 bp, respectively. Three deletion zones were identified compared to CN01, comprising 15 genes, including 3 envelope proteins (VP41A, VP52A and VP41B), 1 non-structural protein (ICP35) and 11 other encoding proteins whose function is currently unknown. In addition, 5 genes (wsv129, wsv178, wsv204, wsv249 and wsv497) presented differences in their repetitive motifs, which could potentially be involved in the regulation of gene expression, causing virulence variations.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , Virulence/genetics , Aquaculture , Biological Assay/veterinary
5.
Cell Tissue Res ; 390(3): 385-398, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36075993

ABSTRACT

Branchial chambers constitute the main osmoregulatory site in almost all decapod crustaceans. However, few studies have been devoted to elucidate the cellular function of specific cells in every osmoregulatory structure of the branchial chambers. In decapod crustaceans, it is well-known that the osmoregulatory function is localized in specific structures that progressively specialize from early developmental stages while specific molecular mechanisms occur. In this study, we found that although the structures developed progressively during the larval and postlarval stages, before reaching juvenile or adult morphology, the osmoregulatory capabilities of Litopenaeus vannamei were gradually established only during the development of branchiostegites and epipodites, but not gills. The cellular structures of the branchial chambers observed during the larval phase do not present the typical ultrastructure of ionocytes, neither Na+/K+-ATPase expression, likely indicating that pleura, branchiostegites, or bud gills do not participate in osmoregulation. During early postlarval stages, the lack of Na+/K+-ATPase immunoreactivity of the ionocytes from the branchiostegites and epipodites suggests that they are immature ionocytes (ionocytes type I). It could be inferred from IIF and TEM results that epipodites and branchiostegites are involved in iono-osmoregulation from PL15, while gills and pleura do not participate in this function.


Subject(s)
Penaeidae , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Osmoregulation , Water-Electrolyte Balance , Gills , Larva/metabolism , Salinity
6.
Beilstein J Org Chem ; 17: 1360-1373, 2021.
Article in English | MEDLINE | ID: mdl-34136015

ABSTRACT

The white spot syndrome virus (WSSV), currently affecting cultured shrimp, causes substantial economic losses to the worldwide shrimp industry. An antiviral therapy using double-stranded RNA interference (dsRNAi) by intramuscular injection (IM) has proven the most effective shrimp protection against WSSV. However, IM treatment is still not viable for shrimp farms. The challenge is to develop an efficient oral delivery system that manages to avoid the degradation of antiviral RNA molecules. The present work demonstrates that VLPs (virus-like particles) allow efficient delivery of dsRNAi as antiviral therapy in shrimp. In particular, VLPs derived from a virus that infects plants, such as cowpea chlorotic mottle virus (CCMV), in which the capsid protein (CP) encapsidates the dsRNA of 563 bp, are shown to silence the WSSV glycoprotein VP28 (dsRNAvp28). In experimental challenges in vivo, the VLPs- dsRNAvp28 protect shrimp against WSSV up to 40% by oral administration and 100% by IM. The novel research demonstrates that plant VLPs, which avoid zoonosis, can be applied to pathogen control in shrimp and also other organisms, widening the application window in nanomedicine.

7.
Arch Virol ; 159(9): 2213-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24658782

ABSTRACT

White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.


Subject(s)
Penaeidae/virology , White spot syndrome virus 1/isolation & purification , Animals , Hemolymph/virology , Osmotic Pressure , Penaeidae/drug effects , Penaeidae/physiology , Salinity
8.
Front Physiol ; 2: 34, 2011.
Article in English | MEDLINE | ID: mdl-21808622

ABSTRACT

The successful establishment of a species in a given habitat depends on the ability of each of its developing stages to adapt to the environment. In order to understand this process we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax, to various salinities during its ontogeny. The expression and localization of Aquaporin 1a (AQP1a) mRNA and protein were determined in different osmoregulatory tissues. In larvae, the sites of AQP1a expression are variable and they shift according to age, implying functional changes. In juveniles after metamorphosis (D32-D48 post-hatch, 15-25 mm) and in pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and the AQP1a location was observed in the intestine. In juveniles (D87-D100 post-hatch, 38-48 mm), the transcript levels of AQP1a in the digestive tract and in the kidney were higher in sea water (SW) than at lower salinity. These observations, in agreement with existing models, suggest that in SW-acclimated fish, the imbibed water is absorbed via AQP1a through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a may play a role in water reabsorption in the kidney. These mechanisms compensate dehydration in SW, and they contribute to the adaptation of juveniles to salinity changes during sea-lagoon migrations. These results contribute to the interpretation of the adaptation of populations to habitats where salinity varies.

9.
Article in English | MEDLINE | ID: mdl-18485772

ABSTRACT

Sea-bass (Dicentrarchus labrax) grow under different salinity regimes, from the open sea to lagoons and even rivers, but some mortality has been recorded in juvenile stages when exposed to low salinity water. Changes in water permeability of different osmoregulatory tissues could be the cause of reduction in blood osmotic pressure and death in some fish in fresh water (FW). In order to explore this condition, we have studied the changes of aquaporins (AQP1 and AQP3), alpha1 and alpha4 Na(+)/K(+)-ATPase transcript levels in the digestive tract, kidney and gills after a long-term exposure of juvenile sea-bass to sea water (SW) and FW fish able to survive in SW and FW are called SW-adapted fish (SWS), FW successfully-adapted fish (FWS) respectively, while fish that die in FW are called FW unsuccessfully-adapted fish (FWU). AQP1 was highly expressed in SWS digestive tract and kidney, suggesting its involvement in water absorption. In FWU, AQP1 transcript levels in the digestive tract were higher than in FWS, suggesting higher water absorption. AQP3 transcript levels in gills were higher in FWS compared to SWS, suggesting a role in FW adaptation. AQP3 transcript levels in gills were higher in FWU than in FWS, suggesting an increase in gill water permeability or other solutes. Transfer to FW was followed in gills by an increase in alpha1 and alpha4 Na(+)/K(+)-ATPase levels in FWS and FWU, supporting the current model of ion absorption through the gills.


Subject(s)
Adaptation, Physiological , Aquaporins/metabolism , Bass/physiology , Fresh Water , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Aquaporins/genetics , Gene Expression Regulation , Kidney/cytology , Kidney/metabolism , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salinity , Seawater , Sodium-Potassium-Exchanging ATPase/genetics
10.
Article in English | MEDLINE | ID: mdl-17618150

ABSTRACT

Euryhaline fish possess the ability to compensate for environmental salinity changes through hydro-mineral regulation. A number of proteins have been studied in order to understand water and ion exchanges, known as fish osmoregulation. Sea-bass (Dicentrarchus labrax) cDNA sequences encoding a homologue of mammalian aquaporin (termed AQP1) and a homologue of mammalian aquaglyceroporin (termed AQP3) have been isolated and sequenced. The aquaporin amino acid sequences share respectively more than 60% and 65% identity with other known aquaporins. We have shown that salinity influences aquaporin expression levels in the gill, kidney and digestive tract, the main osmoregulatory organs. AQP1 may have a major osmoregulatory role in water transport in kidney and gut in SW-acclimated fish, whereas AQP3 could be implicated in gill water transport in FW-acclimated fish.


Subject(s)
Aquaporin 1/metabolism , Aquaporin 3/metabolism , Bass/metabolism , Fish Proteins/metabolism , Sodium Chloride/metabolism , Water-Electrolyte Balance , Adaptation, Physiological , Animals , Aquaporin 1/chemistry , Aquaporin 1/genetics , Aquaporin 3/chemistry , Aquaporin 3/genetics , Brain/metabolism , Evolution, Molecular , Fish Proteins/chemistry , Fish Proteins/genetics , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Gills/metabolism , Humans , Kidney/metabolism , Molecular Sequence Data , Phylogeny , RNA, Messenger/metabolism , Sequence Homology, Amino Acid
11.
Dev Growth Differ ; 48(3): 139-51, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16573732

ABSTRACT

The ontogeny of the digestive tract (DT) and of Na(+)/K(+)-ATPase localization was investigated during the early postembryonic development (from yolk sac larva to juvenile) of the euryhaline teleost Dicentrarchus labrax reared at two salinities: seawater and diluted seawater. Histology, electron microscopy and immunocytochemistry were used to determine the presence and differentiation of ion transporting cells. At hatching, the DT is an undifferentiated straight tube over the yolk sac. At the mouth opening (day 5), it comprises six segments: buccopharynx, esophagus, stomach, anterior intestine, posterior intestine and rectum, well differentiated at the juvenile stage (day 72). The enterocytes displayed ultrastructural features similar to those of mitochondria-rich cells known to be involved in active ion transport. At hatching, ion transporting cells lining the intestine and the rectum exhibited a Na(+)/K(+)-ATPase activity which increased mainly after the larva/juvenile (20 mm) metamorphic transition. The immunofluorescence intensity was dependent upon the stage of development of the gut as well as on the histological configuration of the analyzed segment. The appearance and distribution of enteric ionocytes and the implication of the DT in osmoregulation are discussed.


Subject(s)
Bass/embryology , Bass/metabolism , Digestive System/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Water-Electrolyte Balance/physiology , Animals , Bass/growth & development , Cell Differentiation/physiology , Digestive System/cytology , Digestive System/ultrastructure , Larva/cytology , Larva/growth & development , Larva/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...